![]() |
#4 |
Модератор
|
Он должен быть различным для разных групп товаров. Ну, или один и от же, но с разными параметрами. Причем "группы товаров" здесь - самое интересное.
Дело в том, что нельзя вести прогнозирование на уровне SKU. Для вас 1 кг сахарного песка от ООО "Манечка" и ООО "Танечка" - это одно и то же. А для системы - два абсолютно разных товара. Следовательно, товары необходимо объединить в группы со схожими потребительскими свойствами: "Сахар", фасовка "1кг", "Песок", "средний ценовой диапазон". При этом: * Потребление рафинированного сахара летом будет снижаться (его берут для офисов, летом снижает деловая активность - снижается потребление рафинада) * В июле-сентябре вырастает потребление сахарного песка, причем популярностью пользуется фасовка в 2-5-10 кг. (народ варит варенье / компоты) * Вместо упаковки 2 кг народ готов взять 2х1кг, если разница несущественна * Вместо рафинада, возможно, потребитель готов купить сахарный песок. Но не готов вместо песка купить рафинад. Особенно в сезон. * Не везде потребитель готов переплачивать или покупать дорогой сахарный песок, например, тростниковый. Однако, если его включить в матрицу в правильных магазинах, он займет категорию AY, а то и AX. Хотя обычно - это больше BY (конкуренция не дает ему стать A, хотя спрос на него стабилен). Хотя при этом он будет отъедать долю у рафинада (каннибализация), но маржа покроет это с лихвой. Кроме сезонности, каннибализации и совместно потребляемых товаров (желатин в сезон, например, или крышки для консервирования), важно учесть погоду (теплее лето - лучше урожай - больше потребление), курс на нефть / доллар / экономическую ситуацию в стране (чем хуже ситуация, тем больше людей занимаются приусадебным хозяйством, тем выше потребление сахарного песка в сезон), ситуацию на рынке (требования / сертификация / урожай / кол-во производителей), и другие факторы. Например, рост цен на водку ведет к увеличению самогоноварения и росту спроса на сахар. И это-только сахар песок. Для других категорий, кроме сезонности, надо еще учитывать календарь - постоянные (Новый год, Рождество, 14 и 23 февраля, 8 марта) и плавающие праздники (пост, ураза байрам, курбан байрам, последняя пятница июля и т.п.), а также прочие день строителя и день нефтяника. Когда занимался прогнозированием (datamining), это самая большая проблема была - не получишь ты нормальные прогнозные модели, не приведя в порядок категорийный менеджмент. Хотя DM может помочь выявить SKU со схожими потребительскими свойствами, но это лишь помочь в наведении порядка. И только потом можно прогноз строить в разрезе категорий со схожими потребительскими свойствами. Тогда уже, внутри группы, КМ (категорийный менеджер может играться матрицей, добавляя / удаляя товары и работая с поставщиками). Ну и постоянная обратная связь и подстройка, разумеется. Динамическое изменение буфера, маркетинговые акции и из отслеживание... И, кстати, исторические данные не всегда являются хорошим подспорьем. Достаточно глянуть на прогнозы, построенные по 2007, 2008 и 2009 годам. ![]() С Уважением, Георгий |
|
|
За это сообщение автора поблагодарили: gl00mie (1), trud (5), apanko (4), skuull (5), AlGol (2), AvrDen (1). |
Теги |
big data |
|
Опции темы | Поиск в этой теме |
Опции просмотра | |
|